Suppression of both ELIP1 and ELIP2 in Arabidopsis does not affect tolerance to photoinhibition and photooxidative stress.
نویسندگان
چکیده
ELIPs (early light-induced proteins) are thylakoid proteins transiently induced during greening of etiolated seedlings and during exposure to high light stress conditions. This expression pattern suggests that these proteins may be involved in the protection of the photosynthetic apparatus against photooxidative damage. To test this hypothesis, we have generated Arabidopsis (Arabidopsis thaliana) mutant plants null for both elip genes (Elip1 and Elip2) and have analyzed their sensitivity to light during greening of seedlings and to high light and cold in mature plants. In particular, we have evaluated the extent of damage to photosystem II, the level of lipid peroxidation, the presence of uncoupled chlorophyll molecules, and the nonphotochemical quenching of excitation energy. The absence of ELIPs during greening at moderate light intensities slightly reduced the rate of chlorophyll accumulation but did not modify the extent of photoinhibition. In mature plants, the absence of ELIP1 and ELIP2 did not modify the sensitivity to photoinhibition and photooxidation or the ability to recover from light stress. This raises questions about the photoprotective function of these proteins. Moreover, no compensatory accumulation of other ELIP-like proteins (SEPs, OHPs) was found in the elip1/elip2 double mutant during high light stress. elip1/elip2 mutant plants show only a slight reduction in the chlorophyll content in mature leaves and greening seedlings and a lower zeaxanthin accumulation in high light conditions, suggesting that ELIPs could somehow affect the stability or synthesis of these pigments. On the basis of these results, we make a number of suggestions concerning the biological function of ELIPs.
منابع مشابه
Differential expression and localization of early light-induced proteins in Arabidopsis.
The early light-induced proteins (Elips) in higher plants are nuclear-encoded, light stress-induced proteins located in thylakoid membranes and related to light-harvesting chlorophyll (LHC) a/b-binding proteins. A photoprotective function was proposed for Elips. Here we showed that after 2 h exposure of Arabidopsis (Arabidopsis thaliana) leaves to light stress Elip1 and Elip2 coisolate equally ...
متن کاملThe Responses of Arabidopsis Early Light-Induced Protein2 to Ultraviolet B, High Light, and Cold Stress Are Regulated by a Transcriptional Regulatory Unit Composed of Two Elements.
The Arabidopsis (Arabidopsis thaliana) Early Light-Induced Protein (ELIP) is thought to act as a photoprotectant, reducing the damaging effects of high light (HL). Expression of ELIP2 is activated by multiple environmental stresses related to photoinhibition. We have identified putative regulatory elements in an ELIP2 promoter using an octamer-based frequency comparison method, analyzed the rol...
متن کاملPlant tolerance to excess light energy and photooxidative damage relies on plastoquinone biosynthesis
Plastoquinone-9 is known as a photosynthetic electron carrier to which has also been attributed a role in the regulation of gene expression and enzyme activities via its redox state. Here, we show that it acts also as an antioxidant in plant leaves, playing a central photoprotective role. When Arabidopsis plants were suddenly exposed to excess light energy, a rapid consumption of plastoquinone-...
متن کاملMutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis.
The Arabidopsis var2 variegation mutant defines a nuclear gene for a chloroplast FtsH metalloprotease. Leaf variegation is expressed only in homozygous recessive plants. The cells in the green leaf sectors of this mutant contain morphologically normal chloroplasts, whereas cells in the white sectors contain abnormal plastids lacking organized lamellar structures. var2 mutants are hypersusceptib...
متن کاملPhotosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress.
Exposure of Arabidopsis plants that were maintained under low light (200 mumol of photons m-2 sec-1) to excess light (2000 mumol of photons m-2 sec-1) for 1 hr caused reversible photoinhibition of photosynthesis. Measurements of photosynthetic parameters and the use of electron transport inhibitors indicated that a novel signal transduction pathway was initiated at plastoquinone and regulated, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 141 4 شماره
صفحات -
تاریخ انتشار 2006